

Fig. 2. Unit cell of droperidol viewed along the b axis (the hydrogen bonds are shown with broken lines).
bonds with $\mathrm{N}(14)$ and a screw-axis-related (y direction) $O(21)$ atom, and as an acceptor with the second water molecule $\mathrm{O}(30)$ and a translation-equivalent (x direction) imidazolic NH group.

The second water molecule $O(30)$ forms, in addition to the hydrogen bond with $\mathrm{O}(29)$ mentioned above, a second hydrogen bond with a symmetry-related (screw axis) $O(1)$.

Table 4 gives relevant hydrogen-bond distances and angles.

We thank Janssen Pharmaceutica, Belgium, for supplying the droperidol sample.

Table 4. Hydrogen-bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$A-B \cdots C$	$\angle A-B \cdots C$	$A-B$	$B \cdots C$	$A \cdots C$
$\mathrm{O}(29)-\mathrm{H}(29 A) \cdots \mathrm{O}(21)^{(\mathrm{ii)}}$	158.0	1.03	1.89	$2.880(5)$
$\mathrm{O}(29)-\mathrm{H}(29 B) \cdots \mathrm{N}(14)$	171.0	1.06	1.73	$2.785(4)$
$\mathrm{O}(30)-\mathrm{H}(30 A) \cdots \mathrm{O}()^{\text {(ii) }}$	165.7	0.89	2.17	$3.044(5)$
$\mathrm{O}(30)-\mathrm{H}(30 B) \cdots \mathrm{O}(29)$	171.9	1.17	1.81	$2.982(5)$
$\mathrm{N}(8)$ (iii) $-\mathrm{H}(8) \cdots \mathrm{O}(29)$	162.9	1.00	1.87	$2.847(5)$

Symmetry code
(i) $\frac{3}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z$
(iii) $1+x, y, z$
(ii) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$

References

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Declercq, J. P., Germain, G. \& Koch, M. H. J. (1973). Acta Cryst. B29, 2311-2313.
Main, P., Woolfson, M. M., Lessinger, L., Germain, G. \& Declerce, J. P. (1974). MULTAN 74. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain-la-Neuve, Belgium.
Stewart, J. M., Machin, P. A., Dickinson, C., Ammon, H. L.. Heck, H. \& Flack, H. (1976). The XRAY 76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phy's. 42, 3175-3187.

Acta Cryst. (1980). B 36. 2830-2832

3-|Bis(trimethylsilyl)aminofluoro(methyl)sily||-2,2,4,4,6,8,8-heptamethyl-5,7-bis(trimethylsily)-1,3,5,7-tetraaza-2,4,6,8-tetrasilabicyclo[4.2.0]octane

By William Clegg
Anorganisch Chemisches Institut der Unitersitüt, Tammannstrasse 4, D-3400 Göttingen, Federal Republic of Germany

(Received 10 June 1980; accepted 1 July 1980)

Abstract. $\mathrm{C}_{20} \mathrm{H}_{60} \mathrm{FN}_{5} \mathrm{Si}_{4}, M_{r} \ldots 642 \cdot 6$, monoclinic, $P 2_{1} / c, \quad a=14 \cdot 107(4), \quad b=9.468(3), \quad c=$ 29.874 (8) $\AA, \beta=102.41(2)^{\circ}, U=3896.9 \AA^{3}, Z=$ $4, D_{x}=1.095 \mathrm{Mg} \mathrm{m}^{3}$; final $R=0.061$ for 4889 reflexions. The molecule contains an almost planar $\mathrm{Si}_{2} \mathrm{~N}_{2}$ ring fused to a $\mathrm{Si}_{3} \mathrm{~N}_{3}$ ring which approximates to a boat conformation.

Introduction. This structure was determined as part of a study of $\mathrm{Si}-\mathrm{N}$ ring compounds. Air-stable, colour-
less crystals were obtained from a solution in light petrol. The preparation has been described (Skoda, Klingebiel \& Meller, 1980).

Intensities were measured with graphite-monochromated Mo $K \prime$ radiation ($\lambda=0.71069 \AA$) and a Stoe-Siemens AED diffractometer by a profile-fitting procedure (Clegg, 1981). 4889 reflexions with $7 \leq 2 \theta \leq 60^{\circ}$ and $I \geq 2 \sigma(I)$ were collected. No corrections were made for absorption ($\mu=0.32 \mathrm{~mm}{ }^{1}$). Cell dimensions were obtained by least squares from the setting angles of 24 reflexions with $20 \leq 2 \theta \leq 25^{\circ}$.

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal paraineters $\left(\AA^{2} \times 10^{4}\right)$

	x	y	z	U	$\mathrm{Si}(1)-\mathrm{N}(1) \quad 1.7$		$\mathrm{Si}(2)-\mathrm{N}(1) \quad 1.742$ (3)	
					$\mathrm{Si}(2)-\mathrm{N}(2) \quad 1.73$	$1.733 \text { (3) }$	$\mathrm{Si}(3)-\mathrm{N}(1) \quad 1.749$ (3)	
					$\mathrm{Si}(3)-\mathrm{N}(2) \quad 1.7$. 742 (3)	$\mathrm{Si}(3)-\mathrm{N}(3) \quad 1.717$ (3)	
$\mathrm{Si}(1)$	4329 (1)	1552 (1)	1207 (1)	647 (5)	$\mathrm{Si}(4)-\mathrm{N}(3) \quad 1.75$. 755 (3)	Si(5)-N(3) 1.763 (3)	
C(11)	3384 (3)	1872 (6)	1556 (2)	1002 (24)	$\mathrm{Si}(5)-\mathrm{N}(4) \quad 1.77$. 776 (3)	$\mathrm{Si}(6)-\mathrm{N}(2) \quad 1.6$	1.698 (3)
C(12)	4645 (4)	-351 (4)	1289 (2)	921 (23)	$\mathrm{Si}(6)-\mathrm{N}(4) \quad 1.75$. 755 (3)	$\mathrm{Si}(7)-\mathrm{N}(4) \quad 1$.	1.717 (3)
C(13)	3780 (4)	1934 (6)	604 (2)	1165 (28)	$\mathrm{Si}(7)-\mathrm{N}(5)$ $\mathrm{Si}(9)-\mathrm{N}(5)$.729 (3) .747 (3)	$\begin{array}{ll}\mathrm{Si}(8)-\mathrm{N}(5) & 1 . \\ \mathrm{Si}(7)-\mathrm{F}(7) & 1.6\end{array}$	1.767 (4)
N(1)	5308 (2)	2644 (3)	1402 (1)	540 (12)	$\begin{array}{ll}\mathrm{Si}(9)-\mathrm{N}(5) & 1.74 \\ \mathrm{Si}(1)-\mathrm{C}(11) & 1.88\end{array}$.747 (3) .885 (6)	$\begin{array}{ll}\mathrm{Si}(7)-\mathrm{F}(7) & 1.61 \\ \mathrm{Si}(1)-\mathrm{C}(12) & 1.8\end{array}$	1.613 (3)
$\mathrm{Si}(2)$	5329 (1)	4129 (1)	1748 (1)	655 (5)	$\mathrm{Si}(1)-\mathrm{C}(13) \quad 1.8$. 839 (5)	$\mathrm{Si}(2)-\mathrm{C}(21) \quad 1.8$	1.864 (5)
C(21)	4445 (3)	5531 (5)	1497 (2)	1079 (27)	$\mathrm{Si}(2)-\mathrm{C}(22) \quad 1.85$. 857 (5)	$\mathrm{Si}(3)-\mathrm{C}(31) \quad 1.8$	1.844 (4)
$\mathrm{C}(22)$	5219 (4)	3774 (6)	2346 (2)	1194 (28)	$\mathrm{Si}(4)-\mathrm{C}(41) \quad 1.8$. 845 (4)	$\mathrm{Si}(4)-\mathrm{C}(42) \quad 1.85$	1.850 (5)
N(2)	6532 (2)	4397 (3)	1724 (1)	492 (11)	$\mathrm{Si}(4)-\mathrm{C}(43) \quad 1.86$.866 (5)	$\mathrm{Si}(5)-\mathrm{C}(51) \quad 1.86$	1.865 (5)
$\mathrm{Si}(3)$	6544 (1)	2848 (1)	1410 (1)	483 (4)	$\mathrm{Si}(5) \mathrm{C}(52) \quad 1.85$. 853 (4)	$\mathrm{Si}(6)-\mathrm{C}(61) \quad 1.81$	1.861 (4)
C(31)	7280 (3)	1416 (4)	1730 (1)	764 (20)	$\mathrm{Si}(6)-\mathrm{C}(62) \quad 1.85$	1.853 (4)	Si(7)-C(71) 1.83	1.837 (5)
N(3)	6980 (2)	3306 (3)	936 (1)	467 (11)	$\mathrm{Si}(8)-\mathrm{C}(81)$	$1.850(5)$	$\begin{array}{ll}\mathrm{Si}(8)-\mathrm{C}(82) & 1.85 \\ \mathrm{Si}(9)-\mathrm{C}(91) & 1.87\end{array}$	1.855 (6)
Si(4)	6993 (1)	2128 (1)	484 (1)	646 (5)	$\begin{array}{ll}\mathrm{Si} \\ \mathrm{Si}(9)-\mathrm{C}(92) & 1.8\end{array}$	1.878 (6)	$\begin{array}{ll}\mathrm{Si}(9)-\mathrm{C}(91) & 1.81 \\ \mathrm{Si}(9)-\mathrm{C}(93) & 1 .\end{array}$	1.873 (5)
C(4)	6293 (4)	2820 (6)	-66 (1)	1002 (23)				1.848 (5)
C(42)	8240 (4)	1676 (6)	430 (2)	1018 (24)	$\mathrm{C}(11)-\mathrm{Si}(1)-\mathrm{C}(12)$) 105.1 (2)	$\mathrm{C}(11)-\mathrm{Si}(1)-\mathrm{C}(13) \quad 108 \cdot 1$ (2)	
C(43)	6424 (4)	420 (5)	593 (2)	1073 (26)	$\mathrm{C}(12)-\mathrm{Si}(1) \cdot \mathrm{C}(13)$) 111.0 (3)	$\mathrm{C}(11)-\mathrm{Si}(1)-\mathrm{N}(1) \quad 109.1$ (2)	
$\mathrm{Si}(5)$	7316 (1)	5092 (1)	907 (1)	474 (4)	$\mathrm{C}(12)-\mathrm{Si}(1)-\mathrm{N}(1)$	112.7(2)	$\mathrm{C}(13)-\mathrm{Si}(1)-\mathrm{N}(1) \quad 110 \cdot 5$ (2)	
C(51)	8045 (3)	5312 (5)	459 (1)	759 (19)	$\mathrm{N}(1) \cdot \mathrm{Si}(2)-\mathrm{C}(21)$	114.3 (2)	$\mathrm{N}(1)-\mathrm{Si}(2)-\mathrm{C}(22) \quad 115.5$ (2)	
C(52)	6224 (3)	6209 (4)	720 (1)	705 (18)	$\mathrm{C}(21) \mathrm{Si}(2)-\mathrm{C}(22)$) 109.2 (3)	$\mathrm{N}(1)-\mathrm{Si}(2)-\mathrm{N}(2) \quad 89.2(2)$	
N(4)	8016 (2)	5716 (3)	1436 (1)	452 (11)	$\mathrm{C}(21)-\mathrm{Si}(2)-\mathrm{N}(2)$	117.1 (2)	$\mathrm{C}(22)-\mathrm{Si}(2)-\mathrm{N}(2) \quad 110.5$ (2)	
$\mathrm{Si}(6)$	7433 (1)	5594 (1)	1898 (1)	502 (4)	$\mathrm{N}(1)-\mathrm{Si}(3) \mathrm{N}(2)$	88.6 (1)	$\mathrm{N}(1)-\mathrm{Si}(3)-\mathrm{C}(31) \quad 112.1$ (2)	
C(61)	6873 (3)	7295 (4)	2016 (1)	777 (19)	$\mathrm{N}(2)-\mathrm{Si}(3)-\mathrm{N}(3)$	106.1 (1)	$\mathrm{C}(31)-\mathrm{Si}(3)-\mathrm{N}(3) \quad 110.5$ (2)	
C(62)	8225 (3)	4963 (5)	2438 (1)	810 (20)	$\mathrm{N}(3)-\mathrm{Si}(4)-\mathrm{C}(41)$	111.6 (2)	$\mathrm{N}(3)-\mathrm{Si}(4)-\mathrm{C}(42) \quad 112.5$ (2)	
$\mathrm{Si}(7)$	8939 (1)	6910 (1)	1453 (1)	546 (4)	$\mathrm{C}(41)-\mathrm{Si}(4)-\mathrm{C}(42)$) $110.0(2)$	$\mathrm{N}(3)-\mathrm{Si}(4)-\mathrm{C}(43) \quad 109.9$ (2)	
F(7)	8477 (2)	8206 (2)	1128 (1)	782 (11)	$\mathrm{C}(41)-\mathrm{Si}(4)-\mathrm{C}(43)$) 107.1(2)	$\mathrm{C}(42)-\mathrm{Si}(4) \mathrm{C}(43) \quad 105.5$ (3)	
C(71)	9362 (3)	7684 (6)	2025 (1)	1078 (24)	$\mathrm{N}(3)-\mathrm{Si}(5)-\mathrm{C}(51)$	109.8 (2)	$\mathrm{N}(3)-\mathrm{Si}(5)-\mathrm{C}(52) \quad 110.3$ (2)	
N(5)	9943 (2)	6410 (3)	1245 (1)	558 (12)	$\mathrm{C}(51)-\mathrm{Si}(5)-\mathrm{C}(52)$) $\quad 105 \cdot 7$ (2)	$\mathrm{N}(3)-\mathrm{Si}(5)-\mathrm{N}(4) \quad 112.3$ (1)	
Si(8)	10484 (1)	7717 (2)	960 (1)	768 (6)	$\mathrm{C}(51)-\mathrm{Si}(5)-\mathrm{N}(4)$	108.3 (2)	$\mathrm{C}(52)-\mathrm{Si}(5)-\mathrm{N}(4) \quad 110.2$ (2)	
C(81)	10524 (4)	9465 (5)	1240 (2)	1068 (26)	N(2)-Si(6)-N(4)	$104 \cdot 5$ (1)	$\mathrm{N}(2)-\mathrm{Si}(6) \cdot \mathrm{C}(61) \quad 108.4$ (2)	
C(82)	11764 (4)	7329 (7)	$944(2)$	1469 (39)	$N(4)-\mathrm{Si}(6)-\mathrm{C}(61)$ $\mathrm{N}(4)-\mathrm{Si}(6)-\mathrm{C}(62)$	112.5 (2) 114.1 (2)	$\mathrm{N}(2)-\mathrm{Si}(6)-\mathrm{C}(62) \quad 108.8$ (2)	
C(83)	9816 (4)	7948 (6)	355 (1)	1091 (27)	$\mathrm{N}(4)-\mathrm{Si}(7)-\mathrm{F}(7)$	106.1 (1)	$\mathrm{N}(4)-\mathrm{Si}(7)-\mathrm{C}(71) \quad 112.5$ (2)	
Si(9)	10558 (1)	4827 (1)	1408 (1)	691 (5)	$\mathrm{F}(7) \cdot \mathrm{Si}(7)-\mathrm{C}(71)$	$105 \cdot 3$ (2)	$\mathrm{N}(4)-\mathrm{Si}(7)-\mathrm{N}(5) \quad 118.9$ (2)	
C(91)	11657 (3)	5119 (6)	1877 (2)	1065 (25)	$\mathrm{F}(7)-\mathrm{Si}(7)-\mathrm{N}(5)$	104.4 (2)	$\mathrm{C}(71)-\mathrm{Si}(7)-\mathrm{N}(5) \quad 108.5$ (2)	
C(92)	10905 (4)	3949 (6)	903 (2)	1095 (26)	$\mathrm{N}(5)-\mathrm{Si}(8) \cdots \mathrm{C}(81)$	112.5 (2)	$\mathrm{N}(5)-\mathrm{Si}(8)-\mathrm{C}(82) \quad 113.4$ (3)	
C(93)	9798 (3)	3532 (5)	1633 (2)	877 (22)	$\mathrm{C}(81)-\mathrm{Si}(8)-\mathrm{C}(82)$	(8) 104.7 (3)	$\mathrm{N}(5)-\mathrm{Si}(8)-\mathrm{C}(83) \quad 111.7$ (2)	
	(3)	3532 (5)	1633 (2)	877 (22)	$\mathrm{C}(81)-\mathrm{Si}(8) \cdot \mathrm{C}(83)$) 107.1(2)	$\mathrm{C}(82)-\mathrm{Si}(8)-\mathrm{C}(83) \quad 106.9$ (3)	
					$\mathrm{N}(5)-\mathrm{Si}(9)-\mathrm{C}(91)$	111.3 (2)	$\mathrm{N}(5)-\mathrm{Si}(9)-\mathrm{C}(92) \quad 110.9$ (2)	
					$\mathrm{C}(91) \mathrm{Si}(9)-\mathrm{C}(92)$) 110.4 (2)	$\begin{array}{ll}\mathrm{N}(5)-\mathrm{Si}(9)-\mathrm{C}(93) & 112.2(2) \\ \mathrm{C}(92)-\mathrm{Si}(9)-\mathrm{C}(93) & 105.7(2)\end{array}$	
					$\mathrm{C}(91)-\mathrm{Si}(9)-\mathrm{C}(93)$) 106.1 (2)		
The structure was solved by direct methods and					$\mathrm{Si}(1)-\mathrm{N}(1)-\mathrm{Si}(2)$	126.5 (2)	$\mathrm{Si}(1)-\mathrm{N}(1)-\mathrm{Si}(3) \quad 142.7$ (2)	
refined to a minimum value of $\sum w \Delta^{2}\left\|\Delta=\left\|F_{o}!-\left\|F_{c}\right\|\right.\right.$:					$\mathrm{Si}(2)-\mathrm{N}(1)-\mathrm{Si}(3)$ $\mathrm{Si}(2)-\mathrm{N}(2)-\mathrm{Si}(6)$	$\begin{array}{r}90.7 \\ 139.5(1) \\ \hline\end{array}$	$\mathrm{Si}(2)-\mathrm{N}(2)-\mathrm{Si}(3)$ $91.2(1)$ $\mathrm{Si}(3)-\mathrm{N}(2)-\mathrm{Si}(6)$ $129.3(2)$	
$w^{-1}=\sigma^{2}\left(F_{o}\right)+0.001 F_{o}^{2} \mid$. A common isotropic thermal					$\mathrm{Si}(2)-\mathrm{N}(2)-\mathrm{Si}(6)$ $\mathrm{Si}(3)-\mathrm{N}(3)-\mathrm{Si}(4)$	139.5 (2) 122.7 (2)	$\mathrm{Si}(3)-\mathrm{N}(3)-\mathrm{Si}(5) \quad 115.6$ (2)	
parameter was refined for all H atoms and the methyl					$\mathrm{Si}(4)-\mathrm{N}(3)-\mathrm{Si}(5)$	121.6 (2)	$\mathrm{Si}(5)-\mathrm{N}(4) \cdot \mathrm{Si}(6) \quad 114.4$ (2)	
					Si(5). $\mathrm{Si}(7)-\mathrm{N}(4)-\mathrm{Si}(7)$ Si	121.2 (2)	$\begin{array}{ll}\mathrm{Si}(6) \cdot \mathrm{N}(4)-\mathrm{Si}(7) & 120 \cdot 1(2) \\ \mathrm{Si}(7)-\mathrm{N}(5)-\mathrm{Si}(9) & 122 \cdot 1(2)\end{array}$	
groups were refined as rigid groups with $\mathrm{C}-\mathrm{H}=$ $0.96 \AA, \mathrm{H}-\mathrm{C}-\mathrm{H}=109.5^{\circ}$. All other atoms were					$\mathrm{Si}(7)-\mathrm{N}(5)-\mathrm{Si}(8)$ $\mathrm{Si}(8)-\mathrm{N}(5)-\mathrm{Si}(9)$	$116.9(2)$ $119.7(2)$	$\mathrm{Si}(7)-\mathrm{N}(5)-\mathrm{Si}(9) \quad 122 \cdot 1$ (2)	

1962; Clegg, Klingebiel, Krampe \& Sheldrick, 1980; Clegg, Klingebiel \& Sheldrick, 1980). The sixmembered ring is far from planar (r.m.s. deviation $=$ 0.293 (4) \AA |. Torsion angles for the ring bonds are shown in Fig. 1. The ring does not correspond to any of the ideal conformations, but approximates most closely to the boat conformation, for which the ideal torsion angles are $0,60,-60,0,60,-60^{\circ}$ in cyclic order (Bucourt \& Hainaut, 1965). The simply substituted $\mathrm{Si}_{3} \mathrm{~N}_{3}$ ring in ($\left.\mathrm{PhSiF} . \mathrm{NMe}\right)_{3}$ is almost planar (Clegg, Noltemeyer, Sheldrick \& Vater, 1980). For the structure described here, a planar $\mathrm{Si}_{3} \mathrm{~N}_{3}$ ring is rendered impossible by the ring fusion and also, probably, by the bulky $\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{NSiFMe}^{2}\right.$ substituent at $\mathrm{N}(4)$. The ring in

Fig. 1. A view of the molecule showing the atom numbering and torsion angles (${ }^{\circ}$) for the ring bonds. Torsion angles have an e.s.d. of $0 \cdot 2^{\circ}$. The sign convention is that of Klyne \& Prelog (1960).
$\left(\mathrm{SiMe}_{2} . \mathrm{NSiMe}_{3}\right)_{3}$, which has bulky substituents, is also non-planar (Adamson \& Daly, 1970).

The $\mathrm{Si}-\mathrm{N}$ lengths cover a wide range $[1.698$ (3) to 1.776 (3) $\AA]$. The shortest are those involving $\mathrm{Si}(7)$, which is bonded to an electronegative F atom, and those which are exocyclic to the four-membered ring. This shortening of $\mathrm{Si}-\mathrm{N}$ bonds exocyclic to $\mathrm{Si}_{2} \mathrm{~N}_{2}$ rings appears to be general (Wheatley, 1962; Clegg,

Klingebiel, Krampe \& Sheldrick, 1980; Clegg, Klingebiel \& Sheldrick, 1980).

All N atoms have essentially planar coordination, as is usual in such compounds (Bürger, 1973).

I thank Dr U. Klingebiel for providing crystals and the Verband der Chemischen Industrie for financial support. All computer programs were written by WC and Professor G. M. Sheldrick.

References

Adamson, G. W. \& Daly, J. J. (1970). J. Chem. Soc. A, pp. 2724-2728.
Bucourt, R. \& Hainaut, D. (1965). Bull. Soc. Chim. Fr. pp. 1366-1378.
Bürger, H. (1973). Angew. Chem. Int. Ed. Engl. 12. 474487.

Clegg, W. (1981). Acta Cryst. A 37. In the press.
Clegg, W., Klingebiel, U., Krampe, C. \& Sheldrick, G. M. (1980). Z. Naturforsch. Teil B, 35, 275-281.

Clegg, W., Klingebiel, U. \& Sheldrick, G. M. (1980). Z. Naturforsch. Teil B. In the press.

Clegg, W., Noltemeyer, M., Sheldrick, G. M. \& Vater, N. (1980). Acta Cryst. B36, 2461-2462.

Klyne, W. \& Prelog, V. (1960). Experientia, 16, 521-523.
Skoda, L., Klingebiel, U. \& Meller, A. (1980). Chem. Ber. 113, 2342-2347.
Wheatley, P. J. (1962). J. Chem. Soc. pp. 1721-1724.

Acta Cryst. (1980). B36, 2832-2834

The Structure of Benzoin

By Masao Haisa, Setsuo Kashino and Michihiro Morimoto
Department of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama 700, Japan

(Received 16 May 1980; accepted 8 July 1980)

Abstract. $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$, m.p. 409-410 K , monoclinic, $P 2_{1} / a, a=18.76(2), b=5.765$ (5), $c=10.44$ (2) \AA, $\beta=107 \cdot 1(2)^{\circ}, D_{m}=1 \cdot 29, D_{x}=1.307 \mathrm{Mg} \mathrm{m}^{-3}, Z=4$. The structure was refined to $R=0.082$ for 1820 non-zero reflexions. Molecules related by a 2, axis are linked together by bifurcated hydrogen bonds to form columns along b. The columns are held together by van der Waals interactions along a and c. The keto group makes a dihedral angle of $12.0(1)^{\circ}$ with the plane of the phenyl ring attached to it. The dihedral angle between the two terminal phenyl rings is $64.5(1)^{\circ}$. The torsion angle $\mathrm{O}=\mathrm{C}-\mathrm{C}-\mathrm{O}$ is $26.0(4)^{\circ}$. The $\mathrm{O} \cdots \mathrm{O}$ distance is 2.585 (4) \AA, but there is no intramolecular hydrogen bond between the O atoms.

0567-7408/80/112832-03\$01.00

Introduction. The present work forms part of a study on the relationship between molecular conformation and crystal structure for aromatic compounds in which two benzene rings are separated by two bonding atoms. It has been shown previously that when the two bonding atoms are different the two benzene rings usually make a dihedral angle of about 60° (Kashino, Ito \& Haisa, 1979). The molecular conformation of benzoin is of particular interest because of its ability to form intramolecular hydrogen bonds in solution (Joris \& Schleyer, 1968), and its use as a chelating agent (Koester \& Rotermund, 1965). The unit-cell dimensions have been obtained (Prasad \& Shanker, 1936), but the crystal structure has not been determined.

